3.3.85 \(\int \frac {x \sinh ^{-1}(a x)^2}{\sqrt {1+a^2 x^2}} \, dx\) [285]

Optimal. Leaf size=52 \[ \frac {2 \sqrt {1+a^2 x^2}}{a^2}-\frac {2 x \sinh ^{-1}(a x)}{a}+\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^2}{a^2} \]

[Out]

-2*x*arcsinh(a*x)/a+2*(a^2*x^2+1)^(1/2)/a^2+arcsinh(a*x)^2*(a^2*x^2+1)^(1/2)/a^2

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5798, 5772, 267} \begin {gather*} \frac {2 \sqrt {a^2 x^2+1}}{a^2}+\frac {\sqrt {a^2 x^2+1} \sinh ^{-1}(a x)^2}{a^2}-\frac {2 x \sinh ^{-1}(a x)}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*ArcSinh[a*x]^2)/Sqrt[1 + a^2*x^2],x]

[Out]

(2*Sqrt[1 + a^2*x^2])/a^2 - (2*x*ArcSinh[a*x])/a + (Sqrt[1 + a^2*x^2]*ArcSinh[a*x]^2)/a^2

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 5772

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[x*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5798

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcSinh[c*x])^n/(2*e*(p + 1))), x] - Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)
^p], Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e
, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x \sinh ^{-1}(a x)^2}{\sqrt {1+a^2 x^2}} \, dx &=\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^2}{a^2}-\frac {2 \int \sinh ^{-1}(a x) \, dx}{a}\\ &=-\frac {2 x \sinh ^{-1}(a x)}{a}+\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^2}{a^2}+2 \int \frac {x}{\sqrt {1+a^2 x^2}} \, dx\\ &=\frac {2 \sqrt {1+a^2 x^2}}{a^2}-\frac {2 x \sinh ^{-1}(a x)}{a}+\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^2}{a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 48, normalized size = 0.92 \begin {gather*} \frac {2 \sqrt {1+a^2 x^2}-2 a x \sinh ^{-1}(a x)+\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^2}{a^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*ArcSinh[a*x]^2)/Sqrt[1 + a^2*x^2],x]

[Out]

(2*Sqrt[1 + a^2*x^2] - 2*a*x*ArcSinh[a*x] + Sqrt[1 + a^2*x^2]*ArcSinh[a*x]^2)/a^2

________________________________________________________________________________________

Maple [A]
time = 2.29, size = 64, normalized size = 1.23

method result size
default \(\frac {x^{2} \arcsinh \left (a x \right )^{2} a^{2}+\arcsinh \left (a x \right )^{2}-2 \arcsinh \left (a x \right ) \sqrt {a^{2} x^{2}+1}\, a x +2 a^{2} x^{2}+2}{a^{2} \sqrt {a^{2} x^{2}+1}}\) \(64\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arcsinh(a*x)^2/(a^2*x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/a^2/(a^2*x^2+1)^(1/2)*(x^2*arcsinh(a*x)^2*a^2+arcsinh(a*x)^2-2*arcsinh(a*x)*(a^2*x^2+1)^(1/2)*a*x+2*a^2*x^2+
2)

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 48, normalized size = 0.92 \begin {gather*} \frac {\sqrt {a^{2} x^{2} + 1} \operatorname {arsinh}\left (a x\right )^{2}}{a^{2}} - \frac {2 \, {\left (a x \operatorname {arsinh}\left (a x\right ) - \sqrt {a^{2} x^{2} + 1}\right )}}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsinh(a*x)^2/(a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

sqrt(a^2*x^2 + 1)*arcsinh(a*x)^2/a^2 - 2*(a*x*arcsinh(a*x) - sqrt(a^2*x^2 + 1))/a^2

________________________________________________________________________________________

Fricas [A]
time = 0.42, size = 70, normalized size = 1.35 \begin {gather*} -\frac {2 \, a x \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right ) - \sqrt {a^{2} x^{2} + 1} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{2} - 2 \, \sqrt {a^{2} x^{2} + 1}}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsinh(a*x)^2/(a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

-(2*a*x*log(a*x + sqrt(a^2*x^2 + 1)) - sqrt(a^2*x^2 + 1)*log(a*x + sqrt(a^2*x^2 + 1))^2 - 2*sqrt(a^2*x^2 + 1))
/a^2

________________________________________________________________________________________

Sympy [A]
time = 0.26, size = 49, normalized size = 0.94 \begin {gather*} \begin {cases} - \frac {2 x \operatorname {asinh}{\left (a x \right )}}{a} + \frac {\sqrt {a^{2} x^{2} + 1} \operatorname {asinh}^{2}{\left (a x \right )}}{a^{2}} + \frac {2 \sqrt {a^{2} x^{2} + 1}}{a^{2}} & \text {for}\: a \neq 0 \\0 & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*asinh(a*x)**2/(a**2*x**2+1)**(1/2),x)

[Out]

Piecewise((-2*x*asinh(a*x)/a + sqrt(a**2*x**2 + 1)*asinh(a*x)**2/a**2 + 2*sqrt(a**2*x**2 + 1)/a**2, Ne(a, 0)),
 (0, True))

________________________________________________________________________________________

Giac [A]
time = 0.41, size = 74, normalized size = 1.42 \begin {gather*} \frac {\sqrt {a^{2} x^{2} + 1} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{2}}{a^{2}} - \frac {2 \, {\left (x \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right ) - \frac {\sqrt {a^{2} x^{2} + 1}}{a}\right )}}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsinh(a*x)^2/(a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

sqrt(a^2*x^2 + 1)*log(a*x + sqrt(a^2*x^2 + 1))^2/a^2 - 2*(x*log(a*x + sqrt(a^2*x^2 + 1)) - sqrt(a^2*x^2 + 1)/a
)/a

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {x\,{\mathrm {asinh}\left (a\,x\right )}^2}{\sqrt {a^2\,x^2+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*asinh(a*x)^2)/(a^2*x^2 + 1)^(1/2),x)

[Out]

int((x*asinh(a*x)^2)/(a^2*x^2 + 1)^(1/2), x)

________________________________________________________________________________________